Data Science
DAS
Eidgenössische Technische Hochschule Zürich ETHZ
- Ausbildungsort
-
Zürich ETH-Zentrum (ZH)
- Unterrichtssprache
-
Englisch
- Ausbildungstyp
-
Universitäre Hochschulen UH - Weiterbildung: Lehrgänge
- Zeitliche Beanspruchung
-
Teilzeit
- Ausbildungsthemen
-
Informatik: Studien und Lehrgänge - Medien, Verlag, Information
- Studienrichtungen
- Swissdoc
-
7.561.13.0 - 7.563.2.0 - 7.811.6.0
Aktualisiert 20.08.2024
Beschreibung
Beschreibung des Angebots
Diploma of Advanced Studies (DAS) ist eine Nachdiplomausbildung der Hochschulen und entspricht mindestens 30 ECTS-Punkten. Dieses DAS verlangt 35 bis 45 ECTS-Punkte.
The interdisciplinary programme conveys knowledge across the fields of mathematics, computer science and electrical engineering. This includes all levels of abstraction of technologies relevant to data science, from hardware and electronics, clusters and networks, through big data systems, to machine learning, algorithms and statistics. It also offers insights into political, societal, legal, ethical and privacy aspects of data science.
The participants are taught how to understand and use complex data management (storage, querying, infrastructures, networks etc.) and analysis techniques (machine learning, statistics etc.) in order to utilise them in a broad range of applications.
Structure and Format
The DAS in Data Science split over a foundations course, a specialization track, a capstone project, and further courses to choose from. The capstone project gives an opportunity to put the acquired knowledge into practice on real data sets. In order to achieve the basic knowledge the foundation course must be taken in the first semester. At least 12 ECTS have to be acquired in the specialization track before the start of the capstone project.
Foundation course (min. 6 ECTS). One of:
- Introduction to Estimation and Machine Learning (6 ECTS - autumn semester)
- Introduction to Machine Learning (8 ECTS - spring semester)
- Computational Statistics (8 ECTS - spring semester)
Specialization track (mind. 12 ECTS): Courses must be taken from one of the following tracks.
- Hardware for Machine Learning
- Image Analysis and Computer Vision
- Neural Information Processing
- Statistics
- Machine Learning and Artificial Intelligence
- Big Data Systems
Capstone Project (8 ECTS)
Total workload: approx. 1'050 hours
Aufbau der Ausbildung
1 ECTS-Kreditpunkt entspricht einem Aufwand von 25-30 Arbeitsstunden.
Voraussetzungen
Zulassung
- Master's degree acknowledged by ETH in computer science, data science, mathematics, statistics, physics, mechanical engineering, electrical engineering or in a related field or equivalent educational qualifications;
- existing work experience.
Target group:
- Professionals with a strong background in computer science or mathematics who wish to obtain an in-?depth knowledge in data science. This includes engineers and executive staff members from the industry or the public sector who need in-?depth knowledge in data science.
Kosten
CHF 12'000.-
Application fee: CHF 50.- for persons with a Swiss university degree, CHF 150.- for persons with another university degree
Abschluss
- Diploma of Advanced Studies DAS
Diploma of Advanced Studies ETH in Data Science
Praktische Hinweise
Ort / Adresse
- Zürich ETH-Zentrum (ZH)
Zeitlicher Ablauf
Beginn
Autumn and Spring Semester
Dauer
1 year
Zeitliche Beanspruchung
- Teilzeit
Unterrichtssprache
- Englisch
Bemerkungen
Eidgenössische Technische Hochschule Zürich ETHZ
Tag der offenen Tür
Links
- ethz.ch > School for Continuing Education > DAS Data Science
- ethz.ch > School for Continuing Education > DAS Data Science
Auskünfte / Kontakt
Dr. Ghislain Fourny
Programme Manager
E-Mail: das-in-data-science@inf.ethz.ch
Anbieter 1
Eidgenössische Technische Hochschule Zürich ETHZ
Rämistrasse 101
8092 Zürich ETH-Zentrum
Tel.: 044 632 11 11
E-Mail:
URL:
www.ethz.ch/
Weitere Informationen
School for Continuing Education
ETH Zürich
Zentrum für Weiterbildung
Rämistrasse 101, HG E 17 - E 18.5
8092 Zürich ETH-Zentrum
Tel.: +41 44 632 56 59
E-Mail:
URL:
www.sce.ethz.ch/